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Abstract—This letter develops a novel anomaly detection
method using the generalized graph Laplacian (GGL) matrix
to visualize the spatiotemporal relationship of distribution-level
phasor measurement unit (µPMU) data. The µPMU data in a
specific time horizon is segregated into multiple segments. An
optimization problem formulated as a Lagrangian function is
utilized to estimate the GGL matrix. During the iterative process,
an optimal update is constituted as a quadratic program (QP)
problem. To perform the µPMU-based spatiotemporal analysis,
normalized diagonal elements of GGL matrix are proposed as a
quantitative metric. The effectiveness of the developed method is
demonstrated through real-world µPMU measurements gathered
from test feeders in Riverside, CA.

Index Terms—Anomaly detection, distribution PMU (µPMU),
graph Laplacian matrix, spatiotemporal analysis.

I. INTRODUCTION

W ITH the increasing development of distribution-level
phasor measurement units (µPMUs), the real-time

monitoring of distribution systems has been significantly
improved with advanced sensor technologies. Three-phase
voltage and current phasors with corresponding magnitude
and angle information can be provided by GPS-synchronized
measurements [1]. Synchronized voltage and current mea-
surements at higher resolution and precision are capable of
facilitating a high level of visibility for distribution sys-
tems [2]. Synchronized µPMU data-driven anomaly detection
can contribute to numerous applications in distribution system
operations. Farajollahi et al. [1] developed a method to locate
the source of events in power distribution systems by using
distribution-level µPMUs. Jamei et al. [3] detected the abnor-
mal behavior in the control perimeter by focusing on µPMUs.

Unlike conventional µPMU event detection techniques, such
as the CUSUM algorithm [3] which is highly dependent on a
pre-defined threshold obtained by training a semi-supervised
behavior-based detector, this letter attempts to capture affinity
similarities and patterns among µPMU data by using a gener-
alized graph Laplacian (GGL) matrix and the three-sigma rule.
The µPMU data is represented by weighted graphs that can
offer general and flexible representations for modeling affinity
similarity among anomalies in µPMU data. Essentially, the
similarity of µPMU data under normal conditions would be
broken when anomaly events occur. Based on this concept,
this letter seeks to address two critical questions for µPMU-
based anomaly detection. (i) Is it possible to quantitatively
represent the similarity between anomalies and the normal
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µPMU data with numerical metrics? (ii) Can users deploy the
spatiotemporal similarity to identify system-wide anomalies?
Toward this end, this letter develops a GGL based anomaly
detection method for the spatiotemporal analysis and visu-
alization. The main technical contributions of this letter are
that: (i) using graph learning techniques to detect µPMU-based
anomalies for the first time and (ii) analyzing spatiotemporal
characteristics of anomalies using high-resolution µPMU data.

The organization of this letter is as follows. In Section II,
the developed GGL method is briefly introduced with the
pseudocode of generating GGL matrix. Case studies and result
analysis performed on real-time µPMU data are discussed in
Section III. Concluding remarks are summarized in Section IV.

II. GGL METHODOLOGY

The increasing graph learning techniques pave a distinctive
way for the anomaly detection using the streaming µPMU data
with high resolution. Compared with the combinatorial graph
Laplacians (CGLs), GGLs are shown to be more useful and
practical [4]. GGL can maintain all the edges with positive
weights and introduce additional connectivity due to negative
weights [5]. To estimate the GGL matrix, the optimization
problem using a Lagrangian function is constituted as:

min L(Θ) = ‖Θ�H‖1 + ‖Θ�M‖1 − logdet (Θ) (1)

s.t.

L (A) =

{
Θ ∈ L

∣∣∣∣ (Θ)ij ≤ 0 if (A)ij = 1

(Θ)ij = 0 if (A)ij = 0

}
∀i,j i 6=j

(2)

where H is the regularization matrix and H = α (I− II).
I is an identity matrix. II is an all-ones matrix. α is the
regularization parameter. Θ is the estimated GGL matrix. L is
the target set of graph Laplacians. A is the similarity matrix.
� means the element-wise multiplication of two matrices. ‖·‖1
means the sum of absolute values of all elements (`1-norm).
logdet (·) means the natural logarithm of a determinant. M
is the Lagrange multiplier matrix. The similarity matrix A is
calculated by the difference of ddiag(Θ) and Θ:

A = ddiag(Θ)−Θ (3)

The derivative of (1) with respect to Θ is set to an all-zeros
matrix O, given by:

dL (Θ)/dΘ = −Θ−1 + K + M = O (4)
where K = S+H and S is the covariance matrix empirically
obtained from µPMU data samples.

Letting the inverse matrix C = Θ−1 and using the formula
in (4), the optimality condition for the uth row/column of Θ,
given by:

−cu + ku + mu = o (5)
−cu + ku +mu = 0 (6)
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where cu, ku, and mu are vectors obtained from the uth row
(or column) of matrices C, K, and M, respectively. cu, ku, and
mu are scalars obtained from the uth diagonal of matrices C,
K, and M, i.e., cu = (C)uu, ku = (K)uu, and mu = (M)uu,
respectively.

Based on the above optimality conditions, an optimal update
is designed for the uth row/column of Θ as a quadratic
program (QP) problem, given by:

min
β

βTQβ/2− βTp (7)
where β = − (θu)S , p = (ku/ku)S , and Q =

(
Θ−1u

)
SS .

Vectors/matrix β, p, and Q are selected from the original
variable vectors/matrix θu, ku/ku, and Θ−1u based on the
index set S .

The pseudocode in Algorithm 1 is shown to solve the
desired GGL matrix. It iteratively updates each row/column
of the estimated GGL matrix Θ̂ and its estimated inverse
matrix Ĉ by optimizing the QP problem formulated in (7).
The convergence criterion is defined as the sum of squared
values of GGL matrix elements in the vth iteration:

‖Θ̂v − Θ̂v−1‖F
‖Θ̂v−1‖F

=

√√√√ N∑
i=1

N∑
j=1

∣∣∣θ̂ij,v∣∣∣2 −
√√√√ N∑

i=1

N∑
j=1

∣∣∣θ̂ij,v−1∣∣∣2
(8)

III. CASE STUDIES AND RESULTS

A. µPMU Data Description and Preprocessing

The performance of our developed method is validated using
µPMU data from four real-world distribution feeder and build-
ing locations in Riverside, CA [1]. Distribution µPMU devices
Algorithm 1: Iterative Process for Getting GGL Matrix

1 Preprocess µPMU data to filter the ambient noise.
Obtain sample statistics S. Set the regularization
matrix H and K = S + H with a tolerance ε. The
total number of µPMU segments is set as N .

2 Initialize estimated inverse matrix Ĉ as the diagonal
matrix formed by diagonal elements of K; and
estimated GGL matrix is set as Θ̂ = Ĉ−1.

3 for Iteration v from 1 to Nv do
4 Assign the previous estimated Θ̂v−1 ← Θ̂
5 for Iteration u from 1 to N do
6 Partition Θ̂, Ĉ, and K for u using the matrix

inversion lemma [6].
7 Update Θ̂−1u = Ĉu − ĉuĉT

u/ĉu; estimate β̂

using (7) to update the uth vector θ̂u and
scalar θ̂u; and update Ĉu, ĉu, and ĉu using:

Ĉu = Θ̂−1u + ĉuĉT
u/ĉu; ĉu = −Ĉuθ̂u/θ̂u

ĉu = 1/(θ̂u − θ̂
T
uΘ̂−1u θ̂u)

8 Rearrange estimated Θ̂ and its inverse Ĉ.
9 end

10 Calculate the convergence criterion and update:
Θ̂v ← Θ̂; v ← v + 1

if convergence criterion in (8) is less than ε then
11 break
12 end
13 end
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Fig. 1. Visualization of current data anomalies of Phase a at Location 1.

are used to collect the synchrophasor data of the voltage
and current data with a 60 Hz sampling rate. In this letter,
it is assumed that each data segment spans approximately
20 seconds and the total number of segments is 37, which
corresponds to an approximately 97% true positive rate (TPR)
of detecting anomalies. The µPMU data is preprocessed to
filter the ambient noise using `1 trend filtering, which is a
simple and tractable technique for generating piecewise linear
fits to the original data by solving a convex program [7].

B. Detected Anomalies in Temporal Domain

Fig. 1 shows the visualization of current data of Phase
a at Location 1 with two anomaly events. As shown in
the bottom subfigure, the preprocessed current data without
ambient noise (orange line) is used to detect the anomalies.
The first anomaly (27th segment) is shown as a smooth-curve
event [8] and challenging to detect for operators. It is mainly
because this smooth-curve anomaly presents a smooth and
continuous coupling together with adjacent points of current
data. The second anomaly (30th segment) is shown as a small
pulse event [8]. The green line indicates the diagonal elements
of estimated GGL matrix Θ̂. As shown in the top subfigure, a
deeper color means a higher similarity between two segments.
Both segments 27 and 30 almost do not have similarity with
any other segments (see lines connected with Seg-27 and Seg-
30 denoted by the lack of colors) due to the occurrence of
anomalies. By comparing subfigures in Fig. 1, the accuracy of
detected anomalies using GGL can be validated.

Table I sorts the metric of the GGL matrix’s diagonal ele-
ments, diag(Θ̂), with the first four segments. The threshold of
this metric is determined by the empirical three-sigma rule [9].
Based on experimental experience in this case, we use the 1.2-
sigma rule to obtain thresholds. If the metric is less than the
threshold, anomalies are detected. As can be seen, segments
27 and 30 with anomalies show the smallest values (see the

TABLE I
METRICS OF FIRST FOUR SEGMENTS OF PHASE A AT LOCATION 1

Sort of Metrics Threshold
diag(Θ̂) 0.0176 0.0680 0.1549 0.1698 0.1537Segments Seg-27 Seg-30 Seg-22 Seg-5



IEEE TRANSACTIONS ON POWER SYSTEMS, 2019 3

TABLE II
TPR AND FPR RESULTS USING CUSUM AND GGL

Methods TPR [%] FPR [%]
CUSUM 93.33 3.33

diag(Θ̂) (proposed) 96.67 1.67
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Fig. 2. diag(Θ̂) results with different ambient noises on 21 time series of
µPMU data.

red area). This observation verifies that the developed method
based on GGL matrix is accurate for anomaly detection in
µPMU data.

To compare our method with the CUSUM method in [3],
the TPR and false positive rate (FPR) are used for illustration.
Table II shows the quantitative results of TPR and FPR. Larger
TPR and smaller FPR mean a better performance of the
detection method. As shown in this table, the diag(Θ̂) metric
validates the effectiveness of the proposed method.

To show the robustness of the developed approach, 21 time
series of µPMU data are collected and added by a Gaussian
random noise with a zero mean and a standard deviation of a
proportion λ of the corresponding µPMU data. λ is increased
from 1% to 3% with a step of 0.1% (i.e., λ ∈ [1%, 3%]). Fig. 2
shows the results of diag(Θ̂) with different ambient noises.
As seen from top to bottom in the vertical axis, the similarity
(GGL diagonal) among µPMU segments is gradually reduced
with ambient noises denoted by the increasing proportion
λ. However, anomalies on segments 27 and 30 are entirely
detected for all 21 time series. This observation can validate
the robustness of the developed approach with respect to
ambient noises.

C. Spatiotemporal Analysis of Detected Anomalies

The three-phase current and voltage data at four loca-
tions are used for the spatiotemporal analysis of detected
anomalies. Other information of µPMU data is introduced
in Section III-A. The normalized diagonal element of GGL
matrix, diag(Θ̂), is proposed as a metric for quantifying
spatiotemporal relationship, given by:

diag(Θ̂) =
diag(Θ̂)−min(diag(Θ̂))

max(diag(Θ̂))−min(diag(Θ̂))
(9)

Fig. 3 visualizes the spatiotemporal relationship of µPMU
data by using the metric diag(Θ̂). As seen in this figure, each
phase has the same metric value (color) among three phases
under most circumstances. However, for Phase b current at
Location 2 in Seg-34, it is possible that one single-phase cur-
rent event occurs. We can also see several three-phase current
events that occur at Location 3 and 4. For Location 1 and
2, there are two current/voltage events in Seg-21 and Seg-27,
respectively. In Seg-7, there is a system-wide voltage-stability
event that occurs at all four locations with a deeper color.
Theoretically, voltage-stability anomalies routinely occur due
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Fig. 3. Spatiotemporal visualization of anomalies using the normalized
diagonal elements of GGL matrix Θ̂.

to reactive power events caused by distribution generators,
capacitors, or reactors. Current events are primarily caused
by distribution generator trips, line faults, etc.

IV. CONCLUSION

In this letter, we develop a novel µPMU-based anomaly de-
tection method by using a generalized graph Laplacian (GGL)
matrix. The developed detection method utilizes a Laplacian
optimization function to estimate the GGL matrix. A quadratic
program technique is used to design the optimal update during
the computation process. In addition, the normalized diagonal
elements of GGL matrix are proposed as a metric for the
spatiotemporal analysis of µPMU data. Some observations are
shown as follows:

(i) The developed method is able to accurately and robustly
detect the anomalies in the temporal domain.

(ii) The spatiotemporal affinity of system-wide anomalies can
be clearly characterized and visualized for operators.
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